백준13430 합 구하기 작성일 2019-12-26 | In PS 문제 링크 http://icpc.me/13430 사용 알고리즘 벌레 캠프 풀이 행렬 거듭 제곱을 이용해 $O(K^3 log N)$ 정도에 해결할 수 있을 것 처럼 생겼습니다. 그러나 점화식을 구하기 귀찮으므로 벌레 캠프를 사용했습니다. 전체 코드 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150#include <bits/stdc++.h> using namespace std; const int mod = 1e9+7; using lint = long long; typedef long long ll; lint ipow(lint x, lint p){ lint ret = 1, piv = x; while(p){ if(p & 1) ret = ret * piv % mod; piv = piv * piv % mod; p >>= 1; } return ret; } vector<int> berlekamp_massey(vector<int> x){ vector<int> ls, cur; int lf, ld; for(int i=0; i<x.size(); i++){ lint t = 0; for(int j=0; j<cur.size(); j++){ t = (t + 1ll * x[i-j-1] * cur[j]) % mod; } if((t - x[i]) % mod == 0) continue; if(cur.empty()){ cur.resize(i+1); lf = i; ld = (t - x[i]) % mod; continue; } lint k = -(x[i] - t) * ipow(ld, mod - 2) % mod; vector<int> c(i-lf-1); c.push_back(k); for(auto &j : ls) c.push_back(-j * k % mod); if(c.size() < cur.size()) c.resize(cur.size()); for(int j=0; j<cur.size(); j++){ c[j] = (c[j] + cur[j]) % mod; } if(i-lf+(int)ls.size()>=(int)cur.size()){ tie(ls, lf, ld) = make_tuple(cur, i, (t - x[i]) % mod); } cur = c; } for(auto &i : cur) i = (i % mod + mod) % mod; return cur; } int get_nth(vector<int> rec, vector<int> dp, lint n){ int m = rec.size(); vector<int> s(m), t(m); s[0] = 1; if(m != 1) t[1] = 1; else t[0] = rec[0]; auto mul = [&rec](vector<int> v, vector<int> w){ int m = v.size(); vector<int> t(2 * m); for(int j=0; j<m; j++){ for(int k=0; k<m; k++){ t[j+k] += 1ll * v[j] * w[k] % mod; if(t[j+k] >= mod) t[j+k] -= mod; } } for(int j=2*m-1; j>=m; j--){ for(int k=1; k<=m; k++){ t[j-k] += 1ll * t[j] * rec[k-1] % mod; if(t[j-k] >= mod) t[j-k] -= mod; } } t.resize(m); return t; }; while(n){ if(n & 1) s = mul(s, t); t = mul(t, t); n >>= 1; } lint ret = 0; for(int i=0; i<m; i++) ret += 1ll * s[i] * dp[i] % mod; return ret % mod; } int guess_nth_term(vector<int> x, lint n){ if(n < x.size()) return x[n]; vector<int> v = berlekamp_massey(x); if(v.empty()) return 0; return get_nth(v, x, n); } struct elem{int x, y, v;}; // A_(x, y) <- v, 0-based. no duplicate please.. vector<int> get_min_poly(int n, vector<elem> M){ // smallest poly P such that A^i = sum_{j < i} {A^j \times P_j} vector<int> rnd1, rnd2; mt19937 rng(0x14004); auto randint = [&rng](int lb, int ub){ return uniform_int_distribution<int>(lb, ub)(rng); }; for(int i=0; i<n; i++){ rnd1.push_back(randint(1, mod - 1)); rnd2.push_back(randint(1, mod - 1)); } vector<int> gobs; for(int i=0; i<2*n+2; i++){ int tmp = 0; for(int j=0; j<n; j++){ tmp += 1ll * rnd2[j] * rnd1[j] % mod; if(tmp >= mod) tmp -= mod; } gobs.push_back(tmp); vector<int> nxt(n); for(auto &i : M){ nxt[i.x] += 1ll * i.v * rnd1[i.y] % mod; if(nxt[i.x] >= mod) nxt[i.x] -= mod; } rnd1 = nxt; } auto sol = berlekamp_massey(gobs); reverse(sol.begin(), sol.end()); return sol; } lint det(int n, vector<elem> M){ vector<int> rnd; mt19937 rng(0x14004); auto randint = [&rng](int lb, int ub){ return uniform_int_distribution<int>(lb, ub)(rng); }; for(int i=0; i<n; i++) rnd.push_back(randint(1, mod - 1)); for(auto &i : M){ i.v = 1ll * i.v * rnd[i.y] % mod; } auto sol = get_min_poly(n, M)[0]; if(n % 2 == 0) sol = mod - sol; for(auto &i : rnd) sol = 1ll * sol * ipow(i, mod - 2) % mod; return sol; } int dp[55][222]; int main(){ int k, n; cin >> k >> n; for(int i=0; i<=k; i++){ for(int j=0; j<222; j++){ if(i == 0){ dp[i][j] = j; continue; } for(int k=1; k<=j; k++) dp[i][j] = (dp[i][j] + dp[i-1][k]) % mod; } } vector<int> v; for(int i=0; i<222; i++) v.push_back(dp[k][i]); cout << guess_nth_term(v, n); }